
PARAMETER AVERAGING IS ALL YOU NEED TO PREVENT FORGETTING

Peter Plantinga2∗, Jaekwon Yoo1, Abenezer Girma1, Chandra Dhir1

1Machine Learning Center of Excellence, JPMorganChase
2McGill University

peter.plantinga@mcgill.ca, jaekwon.yoo@jpmchase.com, abenezer.girma@jpmchase.com, chandra.dhir@jpmchase.com

ABSTRACT
Continual learning for end-to-end automatic speech recog-
nition has to contend with a number of difficulties. Fine-
tuning strategies tend to lose performance on data that
has been previously trained on, a phenomenon known as
catastrophic forgetting. Adapters can help by allowing easy
switching between fine-tuned models, but adapted models
lose performance on data from other domains, which is a
problem if you don’t know what domain your input data
comes from. We propose a solution that reduces forgetting
to only 3.4% while exceeding the average performance of
solutions fine-tuned on all available data, which even with
LoRA has a forgetting rate of 49%. Our experiments on
diverse datasets and models show that a linear interpolation
of several models’ parameters, each fine-tuned from the same
generalist model, results in a unified model that performs
well on all tested data. In addition, the same model can be
fine-tuned and averaged multiple times while maintaining
low rates of forgetting.

Index Terms— speech recognition, continual learning,
catastrophic forgetting, parameter averaging, adapters

I. INTRODUCTION

Modern end-to-end automatic speech recognition (E2E-
ASR) systems have achieved impressive results across a
variety of data by training on massive datasets up to millions
of hours [1]. While these generalist models often perform
surprisingly well on domains they have never seen in a zero-
shot manner, they can still benefit from fine-tuning on data
in a target domain for specific applications.

A typical strategy for fine-tuning E2E-ASR systems in-
volves standard gradient descent updates to model param-
eters using data from the target domain [2]. However, this
strategy usually suffers reduced performance on data from
the original domain, a phenomenon known as catastrophic
forgetting [3]. While it may be possible for some applica-
tions to maintain different parameters for different domains,
this approach has the downside of adding complexity and
consuming storage space, particularly for large models. In
addition, it may not be clear for all cases which domain a

∗Work performed at JPMorganChase

target sample falls into, nor is it obvious which parameters
to use in new domains.

Several attempts have been made to address this challenge
by changing the rate that some parameters are updated. This
has been achieved either by freezing some parameters [4]
or by introducing loss regularization designed to mitigate
forgetting [5]. Other similar approaches include layer-wise
learning rate decay (LLRD) [6] and slanted triangular learn-
ing rates (STLR) [7]. These techniques have had mixed
success in reducing forgetting; serial fine-tuning across mul-
tiple new domains often still results in substantially reduced
performance on data from domains seen during training. Our
proposed method can be combined with these approaches,
and demonstrates a significantly reduced rate of forgetting
on top of them.

Some have addressed forgetting by freezing the entirety
of the pre-trained generalist model and introducing domain-
specific parameters [8]. A popular technique in this vein
is adapters [9], which involves freezing the original model
parameters and updating only small modules inserted be-
tween layers, with a starting configuration that preserves
the behavior of the original model. One primary example
is LoRA [10]. In principle, when performing inference on
a sample, the appropriate adapters for the given sample’s
domain can be loaded and utilized. However, determining
the domain of a sample may not always be straightforward,
or the sample may originate from a new domain. In addition
to making it easier to train, store, and switch between
models, adapters may also mitigate forgetting on original
domain data. But there is still room for improvement. Our
approach reduces forgetting drastically while maintaining a
single model, thereby removing complexity and eliminating
the need to determine the domain from which a sample
originates.

One final technique involves replaying data from the
original domain [11]. This approach can work well when the
original data is available. However, it is not always feasible,
especially for pretrained models where the original data is
not publicly available. This is the case for most of the best-
performing publicly-available end-to-end ASR models.

In summary, this work proposes a reformulation of the
continual learning paradigm. Instead of training a model



Continual Learning

Average of Domain Experts

Generalist
Model

Domain 2 
Expert

Fine-tune on

Domain 1

Fine-tune on

Domain 2

…Domain 1
Expert

Domain 3 
Expert

Fine-tune on

Domain 3

Generalist
Model

Domain 1
Expert

Domain 2
Expert

Domain 3
Expert

Average of
Experts

∑

Domain 4
Expert

Domain 5
Expert

Domain 6
Expert

∑ …Average of
Experts

Fig. 1. Our proposed update to the continual learning paradigm: instead of training sequentially on a variety of domains,
fine-tune on each domain in parallel and then combine the results to get an average of domain experts model with minimal
forgetting. This process can be done multiple times in sequence to improve performance without forgetting.

serially on different datasets, which can lead to forgetting,
we minimize this issue by training in parallel on several
datasets and combining the resulting expert models through
parameter averaging. This process can be repeated, further
fine-tuning the averaged model on the same or new data,
with little to no increase in the degree of forgetting. We call
this proposed paradigm Average of Domain Experts (AoDE).

II. RELATED WORK

Model parameter averaging appears in a number of con-
texts but appears only rarely in the context of continual
learning, given the emphasis of the field on serial fine-tuning
on a sequence of new domains. We relate a few of these
contexts:

For distributed model training with limited connectivity,
called federated learning, some researchers have found that
averaging models can achieve a similar performance as
training a single model on all data [12], [13]. This strategy
has the advantages of reducing communication overhead,
as well as preserving data privacy by sharing only model
parameters and not data samples. Dynamic approaches share
parameters more or less frequently based on how rapidly
performance deteriorates on out-of-domain data.

Another context in which model averaging appears is in
improving the generalization of trained models. One example
is Stochastic Weight Averaging [14] which finds better

optima by collecting checkpoints throughout the training
process and averaging them.

Other researchers have used model averaging to improve
semi-supervised learning using a teacher model [15]. The
authors found that better teacher models could be created
by averaging the parameters of several teacher models,
created by adding noise to the internal representations of
student models. These averaged teacher models produce
better training targets during semi-supervised training.

One last example is that model averaging is used to under-
stand the dynamics of loss basins for neural networks [16].
In order to understand how it is that different random
initializations of ResNets end up achieving very similar
performance after training, the authors suggest permuting
the parameters in an isomorphic way so as to merge the
distinct loss basins into a single loss basin. This is done
by rearranging the parameters in one model to best match
the parameters in an original model, and then merging the
models.

All of this related work shows that model parameter
averaging is a powerful technique that is under-used for the
purpose of continual learning.

III. METHODS
Nearly all SGD-based fine-tuning procedures that sequen-

tially access data will inevitably lose some performance
on the original domain. In addition, the choice of which



Training Procedure CORAAL % Forgetting

Pretrained Model 18.8 -
FT CORAAL, LLRD=1.0 14.4 62%
FT CORAAL, LLRD=0.9 12.4 18%
FT CORAAL, LLRD=0.8 13.2 6.7%

Table I. WER comparison for Whisper small.en fine-tuning
with several values of LLRD. Forgetting is defined as percent
increase in error rates on LibriSpeech.

Procedure SPGI CORAAL % Forgetting

Pretrained Whisper 4.94 18.8 -
Frozen Dec., lr=3e-5 4.17 19.0 10.5%
LLRD=0.9, lr=1e-5 3.14 18.7 9.3%
LLRD=0.9, lr=3e-5 2.87 22.6 52.3%

Table II. WER performance comparison between freezing
all layers except encoder multi-head attention layers as
proposed by [4] and the LLRD approach, using Whisper
small.en model.

order to fine-tune on domains can have a significant effect
on the outcome. To address all of these limitations and
produce a single good-performing generalist model with no
loss of performance, we propose a new continual learning
paradigm that fine-tunes on each domain in parallel, and
then averages the resulting expert models. See Figure 1 for
a graphical depiction of the proposed Average of Domain
Experts approach.

III-A. LLRD and STLR
We begin by reproducing state-of-the-art continual learn-

ing techniques such as layer-wise learning rate decay
(LLRD) [6] and slanted triangular learning rates (STLR)
[7]. These techniques help with better learning and less
forgetting, as shown in Table III-A. LLRD is applied by
assigning the highest learning rate to the highest encoder
layer and decaying the learning rate of each lower layer
by a constant factor, usually 0.9. The learning rate of
the lowest encoder layer is applied to any layers not in
the encoder (decoder, output, embedding, etc.), from the
inspiration of [4]. Our learning rate schedule, STLR, peaks
at roughly 10-20% of the total training time.

Our experiments show that freezing non-encoder layers,
as suggested by [4] is roughly equivalent to reducing the
overall learning rate in the proposed scheme, as shown in
Table II. If one compares the frozen layers row with the
following row, they achieve very similar results across the
board. We also found no benefit to LLRD by adding a loss
against the predictions of the original model, a technique
called Learning without Forgetting (LwF) [5].

III-B. LoRA
LoRA (Low-Rank Adaption) [10] is an approach to

fine-tune models performance by employing a low-rank
matrix decomposition technique to adapt the pre-trained

Procedure VCTK CORAAL Avg. % Forgetting

FT - VCTK 1.62 33.2 12.5 120%
LoRA - VCTK 1.78 31.3 11.2 85%
FT - COR. 3.64 15.1 7.09 38%
LoRA - COR. 2.65 15.2 6.52 22%

Combined 3.62 17.5 7.05 120%
Comb. + LoRA 3.38 18.5 7.47 49%
AoDE 2.57 15.3 5.51 8.9%
AoDE + LoRA 2.07 19.7 6.17 8.6%

Table III. WER comparison between different fine-tuning
procedures and their LoRA equivalents.

Aggregation VCTK CORAAL Avg. % Forgetting

Average 2.57 15.3 5.51 9%
Most extreme 1.99 18.1 6.60 23%
Least extreme 11.4 26.7 12.4 219%

Table IV. A comparison of WER scores for different model
parameter aggregation methods.

model’s weight matrices. In contrast to traditional fine-
tuning methods, LoRA minimizes the number of trainable
parameters by keeping the pre-trained model weights frozen
and introducing trainable rank decomposition matrices to the
layers. This approach fine-tunes a smaller set of parameters
while capturing domain-specific information. The two de-
composition matrices of rank (r) will be multiplied together
to achieve the dimension of the original weights matrices
(dmodel) in the pre-trained model, r ≤ dmodel. A low-
rank indicates a more compact representation of the matrix,
leading a fewer wights to be learned during fine-tuning.
Hence the choice of the rank in LoRA affects the balance
between computational cost and fine-tuning performance. To
enhance the fine-tuning effectiveness of LoRA, we not only
applied it to the transformer layers but also applied it into
the depth-wise separable convolution layer of the Parakeet
model. We conducted experiments using various LoRA rank
values to balance between the model’s performance and the
phenomenon of forgetting during sequential fine-tuning.

Our experiments using LoRA seen in Table III, we see
a consistent pattern of slightly worse performance on the
training dataset, but better performance on non-training
datasets and less forgetting. All experiments were conducted
with either rank=16 or rank=32, or around 2.5-5% of the
parameters of the model, which were experimentally found
to give the lowest WERs. Scale parameter was set to 2× r.
For AoDE, we first merge the LoRA weights back into
the model before averaging, avoiding any dimension mis-
matches.

III-C. AoDE
Once the fine-tuning process is done producing domain

expert models, we compute the average of experts in a
straightforward way: a linear interpolation of corresponding
model parameters with equal weighting on every model.



Dataset Hours Domain Condition

SPGISpeech 5000 Finance Read Speech
CORAAL 140 Everyday Conversational
DiPCo 6 Everyday Dinner Party
Noisy VCTK 20 News Added Noise
Google NE 6 News Accented
JL Corpus 1 Script Emotional

Table V. A comparison of datasets used for our experiments.

This is sufficient for good results, and works well with
other techniques for reduced forgetting, such as LLRD. We
experimented with other aggregation techniques and found
similar average WER from taking the most extreme values
for each parameter, but greatly increased WER from the
least extreme values. This provides additional experimental
evidence for ”dead” neurons with values close to zero [17].
We measure forgetting as the reduction in performance on
LibriSpeech test-clean and test-other sets combined, and
parameter averaging performs best in terms of forgetting.

This process can be taken further, by taking the averaged
model and fine-tuning it once more on the datasets to take
a new average. Our experiments show that this process can
be repeated multiple times with little additional forgetting,
and improves the average performance across datasets. It is
worth noting that this is only possible in the scenario where
the data do not have a short retention period, unlike the first
average in which the experts can be trained asynchronously.
This makes the iterative retraining and averaging method
more comparable to fine-tuning using a combined dataset of
all available data.

IV. EXPERIMENTS
We demonstrate the generality of our results by using

unrelated pre-trained models with differing architecture,
training loss, data, sponsoring organization, etc. The two
pretrained models we used in our experiments are the NeMo
Parakeet CTC model [18] and the OpenAI Whisper small.en
model [19].

IV-A. Datasets
For our experiments we used multiple public datasets with

a variety of qualities. A comparison can be found in table
V. The number of hours ranges from just a couple to over
5000 hours, and the datasets are from a variety of domains
and have various difficult conditions. Here is a list of the
datasets and some information on them.

SPGISpeech [20] consists of 5000 hours of high-quality
recordings of earnings calls. These recordings are well-
transcribed and are difficult for a generalist model only
on account of a large vocabulary of financial terms that
are unlikely to appear elsewhere. To speed up evaluation,
we use a random subset of 2000 samples (roughly same
size as LibriSpeech test sets) for a test set, and find the
resulting performance differs by less than 3% relative in

Procedure SPGI CORAAL DiPCo Avg. % Forgetting

Pretrained 4.94 18.8 48.5 16.6 -

FT SPGI 2.87 22.6 50.1 18.4 52.3%
FT COR. 4.58 12.4 44.3 14.8 17.7%
FT DiPCo 4.31 18.2 44.0 15.5 -0.1%

FT S,D,C 4.35 13.1 43.3 14.5 6.2%
AoDE 3.41 15.7 43.0 14.6 2.1%

Table VI. Whisper small.en performance under different
fine-tuning procedures. The first three are directly fine-tuned
on a single dataset, and the fourth result is fine-tuned on the
three datasets in sequence. The final result is the proposed
average of domain experts.

all measured cases. In addition, while training the Whisper
Small.en model we found that our techniques were still not
sufficient to prevent some catastrophic forgetting when the
entire training set was used. Instead, we select a random
subset of about 1000 hours of the data for training.

CORAAL dataset [21], a conversational dataset between
folks whose primary sociolect is African American Ver-
nacular English (AAVE). The data was recorded in six
separate locations and over the course of ten years (with
one exception). In total, there are more than 150 interviews,
surpassing 140 hours of audio. We split the data by sepa-
rating 5 speakers for each of the validation and test sets,
amounting to roughly 5 hours each. Generalist models have
difficulty with the conversational nature of the data and the
different grammars of the sociolect. We divided the audio
into segments based on the provided timings in the transcript,
ensuring that the total length does not exceed 30 seconds, in
order to match the expected input length for Whisper models.

DiPCo dataset [22] is a small dataset of conversation in
a dinner party scenario. These data were the most chal-
lenging, involving the most speakers and difficult acoustic
conditions. The length of the audio available is 2.7 hours
for development and 3.4 hours for test. In a process similar
to the one used on CORAAL data, we divided the audio into
segments not exceeding 30s in length. The conversations
were recorded from a number of devices, for the sake of
simplicity we take the sum of close-talking microphones as
the audio signal.

Noisy VCTK dataset [23], also sometimes called the
Voicebank + DEMAND dataset, is a standard dataset for
training and evaluating models for speech enhancement, but
is also sometimes used for evaluating robust ASR perfor-
mance [24]. The DEMAND dataset has various real recorded
noisy conditions, such as metro, car, cafe, street, and so on.
These are artificially added to the Voicebank dataset which
has recorded speakers with a variety of different UK accents.
The dataset totals 19 hours of training data, 1h for test.

Google NE [25] is a subset of a crowd-sourced dataset
targeting low-resource languages and dialects. In particular,
we take the subset of recordings from the Nigerian dialect



of English, totaling 5.8 hours of audio. We select roughly
10% of the speakers for both test and validation, resulting
in 4.2 hours for training, 1.1 hours for validation, and 0.5
for test.

JL Corpus [26] is read by voice actors from New Zealand
playing different emotions for improving human-computer
interactions. This emotional speech provides a different
dimension of diversity for the sets of data used in our
experiments. However the targets can be memorized because
there is only a small pool of different phrases used and said
in different emotional ways.

IV-B. Whisper & Cross-Entropy

The Whisper small.en model [19] is trained using standard
sequence-to-sequence cross-entropy loss and consists of two
major sub-models, an encoder and a decoder. The encoder
consists of a small downsampling layer followed by 11 self-
attention blocks and the decoder consists of 11 multi-headed
attention blocks and an output layer. The total number of
parameters is 241M.

This model uses an English-only tokenizer with the same
50k-token vocabulary as GPT-2. The set of characters present
in these tokens is much larger than for NeMo Conformer,
including upper and lower case as well as punctuation. The
training data consists of roughly 500,000 hours of English-
only data present in the OpenAI speech data.

IV-C. Parakeet & CTC

The Parakeet CTC model has 1.1 billion parameters and is
a top-performing model on Huggingface Open ASR Leader-
board [27]. The architecture is similar to NeMo Conformer
but uses Fast Conformer [28] blocks instead, speeding up
training and inference. The tokenizer vocabulary includes
1024 subword tokens; all tokens include only lowercase
letters, apostrophes, and spaces. The model is trained on
NeMo ASRset which currently consists of roughly 36,000
hours of audio from a variety of sources.

V. RESULTS

The results for Whisper small.en are in Table VI. Although
we do not know whether Whisper was trained on Lib-
rispeech, we still see significantly reduced performance from
finetuning on SPGI, indicating that forgetting is occurring.
The table shows that the proposed approach (AoDE) demon-
strates an improvement over the generalist baseline across all
datasets with very little forgetting. Although the degree of
forgetting is correlated with the size of the datasets in this
table, we show later that the more consistent correlation is
with performance. Training on “easier” datasets seems to
be more correlated with forgetting. The sequentially fine-
tuned model performs the best on the last seen dataset but
shows little improvement on the first seen dataset over the
pre-trained version.

The results for Parakeet CTC are in Table VII. The
proposed approach results in drastically less forgetting com-
pared to other potential approaches, even when techniques
such as LLRD and SLTR are used to minimize the forgetting.

• Scenario 1: We first compare results for models fine-
tuned on a single dataset. Unlike in our Whisper ex-
periment, we do not see that larger datasets are more
prone to forgetting, but we do see a consistent pattern
that “easier” datasets (as measured by lower error rates)
are more prone to forgetting. For example, JL Corpus
has repeated phrases in different emotions, which may
allow for memorization – leading to very low error rates
and a high rate of forgetting.

• Scenario 2: We compare methods that are possible
where the data have a short retention period, and are
not available synchronously. In this scenario, since only
one dataset is available at a time, we are forced to do
sequential fine-tuning or to train a model on one subset
at a time. The averaged model has much better overall
performance, though the sequentially-fine-tuned model
sometimes performs better on data from a domain it has
seen recently.

• Scenario 3: In this scenario the data are available long
term and can be combined or reviewed. For the first
rows, we combine all the data into one fine-tuning set,
including a reweighing process aimed at mitigating the
data imbalance. For the rest of the rows, we show
that we are able to iteratively train and then average
on the datasets, leading to better overall performance
while maintaining reduced forgetting. During iterative
training and averaging we do not include the pre-trained
model in the averages. In the last row of this section,
we include the original pre-trained Parakeet model in
the average, and it reduces the forgetting further to
only 5.3% while maintaining the performance of the
averaged model without the original.

• Scenario 4: Finally, we include results where an oracle
provides the domain of the incoming data, and the
corresponding trained LoRA system is loaded and used
for inference. This has no forgetting – we can use the
original model for data from the original domain – but
may not always be possible in practice, as new domains
are added it may not be clear which LoRA system to
use. Additionally, in industrial deployments, managing
and refining multiple LoRAs can make the maintenance
process exceedingly challenging and time-consuming.

In summary for Table VII, we note that the proposed system
achieves the best average performance across the domains,
while maintaining a low rate of forgetting of close to 5%.

In Table VIII, we show that it is possible to re-weight the
parameters of the component models to favor one domain



Procedure VCTK CORAAL JL Corpus Google NE LS t-clean LS t-other Average % Forgetting

Pretrained Parakeet 2.26 20.7 4.85 6.66 1.96 3.65 6.68 0%

Scenario 1

Fine-tuned - VCTK 1.62 33.2 16.8 10.9 4.50 7.78 12.5 120%
Fine-tuned - CORAAL 3.67 15.1 8.03 8.38 2.55 5.21 6.79 38%
Fine-tuned - JL Corpus 11.4 43.7 0.28 15.9 7.26 12.9 15.3 260%
Fine-tuned - Google NE 5.58 25.0 9.89 5.30 3.24 6.82 9.30 79%

Scenario 2

Sequential FT - V,C,J,G 5.64 18.4 1.11 6.24 4.90 8.64 7.49 140%
Sequential FT - G,J,C,V 1.49 26.7 5.93 9.09 4.76 8.57 9.41 140%
Proposed AoDE 2.57 15.3 3.12 5.93 1.98 4.13 5.51 8.9%
AoDE with orig. 2.00 18.4 3.03 5.78 1.93 3.87 5.83 3.4%

Scenario 3

Combined Datasets 3.60 17.5 0.49 8.49 4.07 8.19 7.09 120%
Resampled Datasets 2.54 16.7 0.12 6.24 3.71 7.16 6.07 94%
AoDE - 2nd iteration 1.87 15.7 1.42 5.67 2.02 4.17 5.14 10%
AoDE - 3rd iteration 1.68 15.8 1.24 5.42 2.03 4.24 5.07 12%
AoDE - 3rd iter w/ orig. 1.60 15.8 1.30 5.59 1.93 3.98 5.03 5.3%

Scenario 4

Oracle Domain LoRA 1.78 15.2 2.47 6.04 1.96 3.65 5.19 0%

Table VII. WER of proposed method on all available datasets against all baselines. After the pretrained baseline, the sections
are as follows: Scenario 1: Fine-tuned on a single dataset, Scenario 2: Datasets have short retention periods, Scenario 3:
Datasets are available long-term, Scenario 4: Oracle provides the sample domain.

Procedure VCTK CORAAL JL Corpus Google NE LS t-clean LS t-other Average % Forgetting

AoDE - 3rd it. w/ orig. 1.60 15.8 1.30 5.59 1.93 3.98 5.03 5.3%
AoDE - VCTK × 4 1.42 17.5 1.39 6.12 2.14 4.30 5.47 15%
AoDE - CORAAL × 4 1.78 14.7 1.73 5.53 1.96 4.05 4.96 7.1%
AoDE - JL Corpus × 4 2.00 16.4 1.21 5.84 2.02 4.25 5.28 12%
AoDE - Google NE × 4 1.70 16.2 1.39 5.25 2.01 4.11 5.10 9.1%
AoDE - original × 4 1.75 17.1 2.35 5.81 1.86 3.77 5.44 0.4%

Table VIII. WER comparison between AoDE models with different weightings of component models.

over other domains. We weight each different component
model as half of the total weight (4/8) and weight the rest
equally (1/8). The results show that it is possible to improve
performance on a given domain by up to 10% at the cost of
increased forgetting. When the original model is weighted as
half, we see our lowest level of forgetting at only 0.4%. This
model actually shows 5% better performance on LibriSpeech
test-clean without having seen any additional data from this
domain.

VI. CONCLUSIONS

We were able to show that updating the continual learning
paradigm with parameter averaging can dramatically reduce
catastrophic forgetting in well-trained generalist end-to-end
speech recognition models. This is achieved by averaging the
parameters of well-trained expert models, proving a flexible
and tunable approach to model development.

In the future, we hope to improve on this work with
more sophisticated averaging techniques, taking into account
permutation invariances, with techniques such as Git Re-
Basin [16] or Federated Matched Averaging (FedMA) [13].

In addition, large language model merging algorithms such
as [29], [30] could help preserve more performance from
each domain while averaging.

VII. REFERENCES

[1] Yu Zhang, Wei Han, James Qin, Yongqiang Wang,
Ankur Bapna, Zhehuai Chen, Nanxin Chen, Bo Li, Vera
Axelrod, Gary Wang, et al., “Google USM: Scaling
automatic speech recognition beyond 100 languages,”
arXiv preprint arXiv:2303.01037, 2023.

[2] Seyedmahdad Mirsamadi and John HL Hansen, “On
multi-domain training and adaptation of end-to-end
RNN acoustic models for distant speech recognition.,”
in INTERSPEECH, 2017, pp. 404–408.

[3] German I Parisi, Ronald Kemker, Jose L Part, Christo-
pher Kanan, and Stefan Wermter, “Continual lifelong
learning with neural networks: A review,” Neural
Networks, vol. 113, pp. 54–71, 2019.

[4] Yuki Takashima, Shota Horiguchi, Shinji Watanabe,
Paola Garcı́a, and Yohei Kawaguchi, “Updating only



encoders prevents catastrophic forgetting of end-to-end
ASR models,” in INTERSPEECH, 2022.

[5] Zhizhong Li and Derek Hoiem, “Learning without
forgetting,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, pp. 2935–2947, 2016.

[6] Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q.
Weinberger, and Yoav Artzi, “Revisiting few-sample
bert fine-tuning,” ArXiv, vol. abs/2006.05987, 2020.

[7] Jeremy Howard and Sebastian Ruder, “Universal lan-
guage model fine-tuning for text classification,” in
Annual Meeting of the Association for Computational
Linguistics, 2018.

[8] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume
Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell, “Pro-
gressive neural networks,” ArXiv, vol. abs/1606.04671,
2016.

[9] Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xu-
anjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang,
and Ming Zhou, “K-Adapter: Infusing knowledge into
pre-trained models with adapters,” in Findings, 2020.

[10] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen, “Lora: Low-rank adaptation of large
language models,” arXiv preprint arXiv:2106.09685,
2021.

[11] David Isele and Akansel Cosgun, “Selective experience
replay for lifelong learning,” in AAAI Conference on
Artificial Intelligence, 2018.

[12] Michael Kamp, Linara Adilova, Joachim Sicking,
Fabian Hüger, Peter Schlicht, Tim Wirtz, and Stefan
Wrobel, “Efficient decentralized deep learning by
dynamic model averaging,” in Machine Learning and
Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2018, Dublin, Ireland, September
10–14, 2018, Proceedings, Part I 18. Springer, 2019,
pp. 393–409.

[13] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dim-
itris Papailiopoulos, and Yasaman Khazaeni, “Feder-
ated learning with matched averaging,” in International
Conference on Learning Representations (ICLR), 2020.

[14] Pavel Izmailov, Dmitrii Podoprikhin, T. Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson, “Aver-
aging weights leads to wider optima and better gener-
alization,” ArXiv, vol. abs/1803.05407, 2018.

[15] Antti Tarvainen and Harri Valpola, “Mean teachers
are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results,”
Advances in neural information processing systems,
vol. 30, 2017.

[16] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha
Srinivasa, “Git Re-Basin: Merging models modulo
permutation symmetries,” arXiv e-prints, 2022.

[17] Scott C. Douglas and Jiutian Yu, “Why relu units

sometimes die: Analysis of single-unit error backprop-
agation in neural networks,” 2018 52nd Asilomar
Conference on Signals, Systems, and Computers, pp.
864–868, 2018.

[18] Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii
Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kri-
man, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook,
et al., “NeMo: a toolkit for building AI applications us-
ing neural modules,” arXiv preprint arXiv:1909.09577,
2019.

[19] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever, “Robust
speech recognition via large-scale weak supervision,”
arXiv preprint arXiv:2212.04356, 2022.

[20] Patrick K O’Neill, Vitaly Lavrukhin, Somshubra
Majumdar, Vahid Noroozi, Yuekai Zhang, Olek-
sii Kuchaiev, Jagadeesh Balam, Yuliya Dovzhenko,
Keenan Freyberg, Michael D Shulman, et al., “SPGIS-
peech: 5,000 hours of transcribed financial audio for
fully formatted end-to-end speech recognition,” arXiv
preprint arXiv:2104.02014, 2021.

[21] Tyler Kendall and Charlie Farrington, “The corpus
of regional african american language,” The Online
Resources for African American Language Project,
2021.

[22] Maarten Van Segbroeck, Zaid Ahmed, Ksenia Kut-
senko, Cirenia Huerta, Tinh Nguyen, Bjorn Hoffmeis-
ter, Jan Trmal, Maurizio Omologo, and Roland Maas,
“DiPCo - dinner party corpus,” in INTERSPEECH,
2020.

[23] Cassia Valentini-Botinhao, “Noisy speech database
for training speech enhancement algorithms and TTS
models,” Edinburgh DataShare, 2017.

[24] Peter Plantinga, Deblin Bagchi, and Eric Fosler-
Lussier, “Perceptual loss with recognition model for
single-channel enhancement and robust asr,” arXiv
preprint arXiv:2112.06068, 2021.

[25] Alena Butryna, Shan-Hui Cathy Chu, Isin Demirsahin,
Alexander Gutkin, Linne Ha, Fei He, Martin Jan-
sche, Cibu Johny, Anna Katanova, Oddur Kjartans-
son, et al., “Google crowdsourced speech corpora
and related open-source resources for low-resource
languages and dialects: an overview,” arXiv preprint
arXiv:2010.06778, 2020.

[26] Jesin James, Li Tian, and Catherine Watson, “An
open source emotional speech corpus for human robot
interaction applications,” Interspeech 2018, 2018.

[27] Vaibhav Srivastav, Somshubra Majumdar, Nithin
Koluguri, Adel Moumen, Sanchit Gandhi, et al.,
“Open automatic speech recognition leaderboard,”
https://huggingface.co/spaces/hf-audio/open asr
leaderboard, 2023.

[28] Dima Rekesh, Nithin Rao Koluguri, Samuel Kriman,
Somshubra Majumdar, Vahid Noroozi, He Huang,



Oleksii Hrinchuk, Krishna Puvvada, Ankur Kumar,
Jagadeesh Balam, and Boris Ginsburg, “Fast conformer
with linearly scalable attention for efficient speech
recognition,” in 2023 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), 2023, pp.
1–8.

[29] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal, “Ties-merging: Resolving
interference when merging models,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[30] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yong-
bin Li, “Language models are super mario: Absorbing
abilities from homologous models as a free lunch,” in
Forty-first International Conference on Machine Learn-
ing, 2024.


