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Need for Speed and Efficiency

● Larger Models (self-supervised training)
○ XLS-R up to 2B parameters
○ BigSSL up to 8B parameters

● Larger Datasets (even supervised training)
○ Multilingual LibriSpeech = 50k hours
○ People’s Speech = 30k hours

● Carbon footprint
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3. Deployment
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Distributed Training: Parallel Data
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Distributed Training: Parallel Data

torch.distributed.init_process_group("nccl")

# Use device count to compute local rank from global rank

local_rank = rank % torch.cuda.device_count()

model = Model().to(local_rank)

ddp_model = torch.nn.parallel.DistributedDataParallel(

    model, device_ids=[local_rank]

)

# Create data sampler pinned to global rank

sampler = torch.utils.data.distributed.DistributedSampler(

    train_dataset, num_replicas=world_size, rank=rank,

)

# Optimize in the usual way…

torchrun

 --nnodes=2

 --nproc_per_node=8

 --rdzv_id=100

 --rdzv_backend=c10d

 --rdzv_endpoint=

    $MASTER_ADDR:29400 

 pytorch_train_script.py

pytorch_train_script.py
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Distributed Training: Parallel Data

# Initialize distributed communication protocols

speechbrain.utils.distributed.ddp_init_group(run_opts)

# Data preparation, to be run on only one process

speechbrain.utils.distributed.run_on_main(prepare_data_manifest)

# Automatically wraps model and creates distributed sampler

asr_brain.fit(epoch_counter=range(10), train_set=train_dataset)

speechbrain_train_script.py

torchrun --nproc_per_node=8 speechbrain_train_script.py 

  hyperparams.yaml --distributed_launch --distributed_backend=nccl
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Distributed Training: Parallel Model
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Distributed Training: Parallel Model

Origins of PyTorch 
Fully Sharded Data 
Parallel (FSDP):

● DeepSpeed

● FairScale

Rajbhandari, Samyam, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. "ZeRO: Memory optimizations toward training trillion parameter models." In 
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.
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Distributed Training: Parallel Model

# Wrap policy specifies which layers get sharded

custom_auto_wrap_policy = functools.partial(

    torch.distributed.fsdp.wrap.transformer_auto_wrap_policy,

    transformer_layer_cls={ConformerBlock},

)

# CPU offload allows training truly humongous models

sharded_model = torch.distributed.fsdp.FullyShardedDataParallel(

    single_device_model,

    auto_wrap_policy=custom_auto_wrap_policy,

    cpu_offload=torch.distributed.fsdp.CPUOffload(offload_params=True),

)



Interspeech 2022 — September 18th

Elastic and Fault-tolerant Experiments

Torch Distributed Elastic, upstreamed version 1.9.0

torchrun

    --nnodes=MIN_SIZE:MAX_SIZE

    --nproc_per_node=TRAINERS_PER_NODE

    --max_restarts=NUM_ALLOWED_FAILURES_OR_MEMBERSHIP_CHANGES

    --rdzv_id=JOB_ID

    --rdzv_backend=c10d

    --rdzv_endpoint=HOST_NODE_ADDR

    YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...)

https://pytorch.org/docs/stable/elastic/quickstart.html
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Mixed Precision / Quantization

● Reduced memory and bandwidth

● Faster operations on supporting hardware

● Some operations effective at small precision
e.g. linear, convolution, LSTM

● Some operations require higher precision

e.g. sigmoid, softmax, cross entropy
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Automatic Mixed Precision

scaler = torch.cuda.amp.GradScaler()

# Automatically converts between float16 and float32

with torch.cuda.amp.autocast(dtype=torch.float16):

    output = model(input)

    loss = loss_fn(output, target)

# Perform update operation with scaled gradient

scaler.scale(loss).backward()

scaler.step(optimizer)

scaler.update()
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Mixed Precision: Data Types

float16 — less stable due to reduced dynamic range, requires loss scaling

bfloat16 — supported natively by NVIDIA Ampere GPUs and Google TPUs, 
no scaling needed

https://github.com/Ashok
Bhat/notes/wiki/Bfloat16
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Quantization (Aware Training)

● Easiest is post-training, but might lose performance

● Use quantization aware training to maintain scores

model_int8 = torch.quantization.quantize_dynamic(

    model_fp32,         # the trained, full-precision model

    {torch.nn.Linear},  # a set of layers to dynamically quantize

    dtype=torch.qint8,  # the target dtype for quantized weights

)

# QAT preparation inserts observers and fake_quants in the model.

model_fp32_prepared = torch.quantization.prepare_qat(model_fp32)

training_loop(model_fp32_prepared)
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Model Compilation

● PyTorch is eager execution by default

● Graph mode support via JIT compile to TorchScript

● Can export compiled model to C++ or ONNX

● Op fusion support with NVFuser and NNC

● Removes GIL for multi-threaded inference

● Limitation: not easy to use for model training
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Model Compilation

PyTorch has two ways to compile:

1. torch.jit.trace() — provides model with 

example inputs and records the operations.

2. torch.jit.script() — analyzes the Python 

source code and compiles it to TorchScript.

Not sure which to use? Start with jit.trace()!
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Model Compilation: Limitations

torch.jit.trace() # Generalization is hard

● Does not support control flow (if-else statements)

● Sometimes captures variables as constants

torch.jit.script() # Compilers are hard

● Limited support for Pythonic syntax

● Requires code changes that can obfuscate code

These two approaches can be combined!
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Deployment

Huge area, deserves its own talk!

● Data sourcing / labeling / versioning / pipelining

● Model versioning / packaging / retraining

● Efficient / scalable model inference

● Evaluating / explaining / monitoring predictions
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Deployment: TorchServe

● Widely used (Kubeflow, MLflow, SageMaker)

● Packages all model artifacts to single archive

○ Tool is called torch-model-archiver

● Runs on server, responds to inference requests

○ Supports gRPC and HTTP/REST
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PyTorch at Scale

Thanks for attending! Any questions?


