PyTorch at Scale

Need for Speed and Efficiency

- Larger Models (self-supervised training)
 - XLS-R up to 2B parameters
 - BigSSL up to 8B parameters
- Larger Datasets (even supervised training)
 - Multilingual LibriSpeech = 50k hours
 - People's Speech = 30k hours
- Carbon footprint

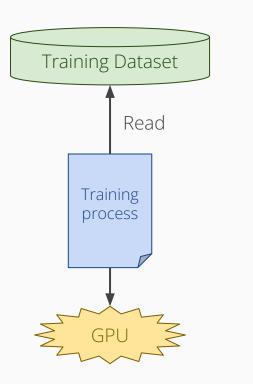
Outline

- 1. Scaling up
 - a. Distributed training
 - b. Elastic and fault-tolerant experiments
- 2. Efficient models
 - a. Mixed precision / Quantization
 - b. Model compilation
- 3. Deployment

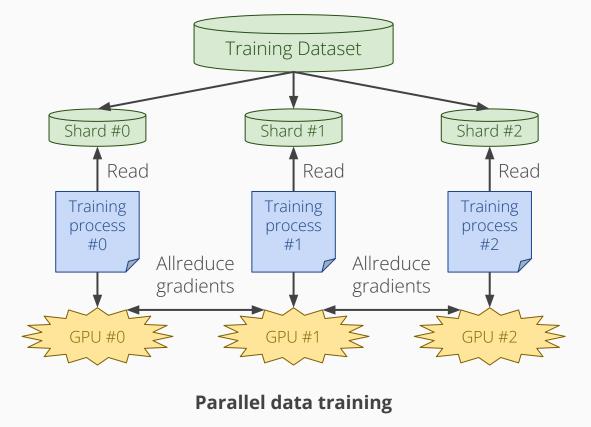
Outline

- 1. Scaling up
 - a. Distributed training
 - b. Elastic and fault-tolerant experiments
- 2. Efficient models
 - a. Mixed precision / Quantization
 - b. Model compilation
- 3. Deployment

Distributed Training: Parallel Data



Sequential data training



Interspeech 2022 — September 18th

Distributed Training: Parallel Data

pytorch_train_script.py

```
torch.distributed.init_process_group("nccl")
local rank = rank % torch.cuda.device count()
model = Model().to(local rank)
ddp model = torch.nn.parallel.DistributedDataParallel(
    model, device ids=[local rank]
sampler = torch.utils.data.distributed.DistributedSampler(
    train dataset, num replicas=world size, rank=rank,
```

Optimize in the usual way..

torchrun
 --nnodes=2
 --nproc_per_node=8
 --rdzv_id=100
 --rdzv_backend=c10d
 --rdzv_endpoint=
 \$MASTER_ADDR:29400
 pytorch_train_script.py

Distributed Training: Parallel Data

speechbrain_train_script.py

Initialize distributed communication protocols
speechbrain.utils.distributed.ddp_init_group(run_opts)

Data preparation, to be run on only one process
speechbrain.utils.distributed.run_on_main(prepare_data_manifest)

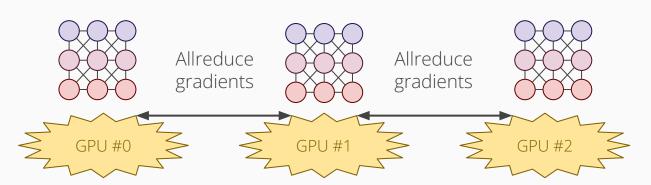
Automatically wraps model and creates distributed sampler
asr_brain.fit(epoch_counter=range(10), train_set=train_dataset)

torchrun --nproc_per_node=8 speechbrain_train_script.py
hyperparams.yaml --distributed_launch --distributed_backend=nccl

Distributed Training: Parallel Model

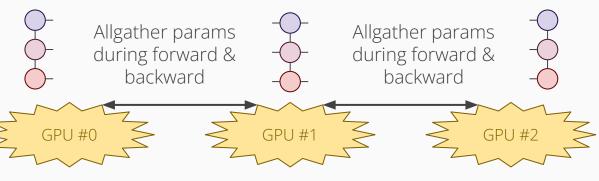
Parallel data: replicate model across all devices

* Less efficient in terms of space



Parallel model: distribute model shards to devices

* Communication overhead, but uses memory efficiently



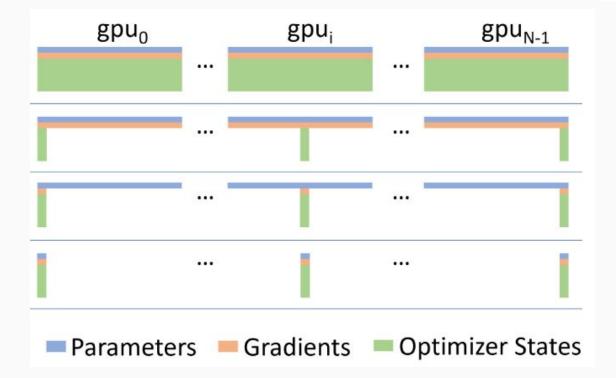
Interspeech 2022 — September 18th

Distributed Training: Parallel Model

Origins of PyTorch Fully Sharded Data Parallel (FSDP):

DeepSpeed

• FairScale



Rajbhandari, Samyam, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. "ZeRO: Memory optimizations toward training trillion parameter models." In *SC20: International Conference for High Performance Computing, Networking, Storage and Analysis*, pp. 1-16. IEEE, 2020.

Distributed Training: Parallel Model


```
custom auto wrap policy = functools.partial(
   torch.distributed.fsdp.wrap.transformer auto wrap policy,
   transformer_layer_cls={ConformerBlock},
sharded model = torch.distributed.fsdp.FullyShardedDataParallel(
   single device model,
   auto_wrap_policy=custom_auto_wrap_policy,
   cpu_offload=torch.distributed.fsdp.CPUOffload(offload_params=True),
```

Elastic and Fault-tolerant Experiments

Torch Distributed Elastic, upstreamed version 1.9.0

```
torchrun
    --nnodes=MIN_SIZE:MAX_SIZE
    --nproc_per_node=TRAINERS_PER_NODE
    --max_restarts=NUM_ALLOWED_FAILURES_OR_MEMBERSHIP_CHANGES
    --rdzv_id=JOB_ID
    --rdzv_backend=c10d
    --rdzv_endpoint=HOST_NODE_ADDR
    YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...)
```

https://pytorch.org/docs/stable/elastic/quickstart.html

Outline

- 1. Scaling up
 - a. Distributed training
 - b. Elastic and fault-tolerant experiments
- 2. Efficient models
 - a. Mixed precision / Quantization
 - b. Model compilation
- 3. Deployment

Mixed Precision / Quantization

- Reduced memory and bandwidth
- Faster operations on supporting hardware
- Some operations effective at small precision e.g. linear, convolution, LSTM
- Some operations require higher precision e.g. sigmoid, softmax, cross entropy

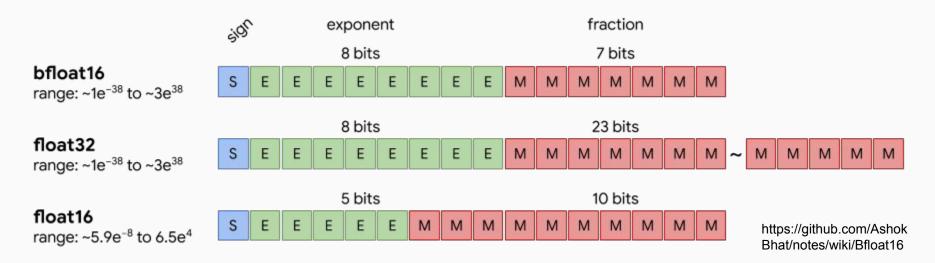
Automatic Mixed Precision


```
scaler = torch.cuda.amp.GradScaler()
```

```
# Automatically converts between float16 and float32
with torch.cuda.amp.autocast(dtype=torch.float16):
    output = model(input)
    loss = loss_fn(output, target)
```

```
# Perform update operation with scaled gradient
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
```

Mixed Precision: Data Types



float16 — less stable due to reduced dynamic range, requires loss scaling

bfloat16 — supported natively by NVIDIA Ampere GPUs and Google TPUs, no scaling needed

Quantization (Aware Training)

• Easiest is post-training, but might lose performance

Use quantization aware training to maintain scores

QAT preparation inserts observers and fake_quants in the model. model_fp32_prepared = torch.quantization.prepare_qat(model_fp32) training_loop(model_fp32_prepared)

Model Compilation

- PyTorch is eager execution by default
- Graph mode support via JIT compile to TorchScript
- Can export compiled model to C++ or ONNX
- Op fusion support with NVFuser and NNC
- Removes GIL for multi-threaded inference
- Limitation: not easy to use for model training

PyTorch has two ways to compile:

- torch.jit.trace() provides model with example inputs and records the operations.
- 2. torch.jit.script() analyzes the Python
 source code and compiles it to TorchScript.

Not sure which to use? Start with jit.trace()!

Model Compilation: Limitations

torch.jit.trace() # Generalization is hard

- Does not support control flow (if-else statements)
- Sometimes captures variables as constants

torch.jit.script() # Compilers are hard

- Limited support for Pythonic syntax
- Requires code changes that can obfuscate code

These two approaches can be combined!

Outline

- 1. Scaling up
 - a. Distributed training
 - b. Elastic and fault-tolerant experiments
- 2. Efficient models
 - a. Mixed precision / Quantization
 - b. Model compilation
- 3. Deployment

Huge area, deserves its own talk!

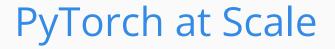
- Data sourcing / labeling / versioning / pipelining
- Model versioning / packaging / retraining
- Efficient / scalable model inference
- Evaluating / explaining / monitoring predictions

Deployment: TorchServe

- Widely used (Kubeflow, MLflow, SageMaker)
- Packages all model artifacts to single archive

• Tool is called torch-model-archiver

- Runs on server, responds to inference requests
 - Supports gRPC and HTTP/REST



Thanks for attending! Any questions?