
PyTorch at Scale

Interspeech 2022 — September 18th

Need for Speed and Efficiency

● Larger Models (self-supervised training)
○ XLS-R up to 2B parameters
○ BigSSL up to 8B parameters

● Larger Datasets (even supervised training)
○ Multilingual LibriSpeech = 50k hours
○ People’s Speech = 30k hours

● Carbon footprint

Interspeech 2022 — September 18th

Outline

1. Scaling up
a. Distributed training

b. Elastic and fault-tolerant experiments

2. Efficient models
a. Mixed precision / Quantization

b. Model compilation

3. Deployment

Interspeech 2022 — September 18th

Outline

1. Scaling up
a. Distributed training

b. Elastic and fault-tolerant experiments

2. Efficient models
a. Mixed precision / Quantization

b. Model compilation

3. Deployment

Interspeech 2022 — September 18th

Distributed Training: Parallel Data

Training Dataset
Training Dataset

Training
process Training

process
#0

Training
process

#1

Training
process

#2

Shard #0 Shard #1 Shard #2

Allreduce
gradients

Allreduce
gradients

GPU

Read

Read Read Read

GPU #0 GPU #1 GPU #2

Sequential data training Parallel data training

Interspeech 2022 — September 18th

Distributed Training: Parallel Data

torch.distributed.init_process_group("nccl")

Use device count to compute local rank from global rank

local_rank = rank % torch.cuda.device_count()

model = Model().to(local_rank)

ddp_model = torch.nn.parallel.DistributedDataParallel(

 model, device_ids=[local_rank]

)

Create data sampler pinned to global rank

sampler = torch.utils.data.distributed.DistributedSampler(

 train_dataset, num_replicas=world_size, rank=rank,

)

Optimize in the usual way…

torchrun

 --nnodes=2

 --nproc_per_node=8

 --rdzv_id=100

 --rdzv_backend=c10d

 --rdzv_endpoint=

 $MASTER_ADDR:29400

 pytorch_train_script.py

pytorch_train_script.py

Interspeech 2022 — September 18th

Distributed Training: Parallel Data

Initialize distributed communication protocols

speechbrain.utils.distributed.ddp_init_group(run_opts)

Data preparation, to be run on only one process

speechbrain.utils.distributed.run_on_main(prepare_data_manifest)

Automatically wraps model and creates distributed sampler

asr_brain.fit(epoch_counter=range(10), train_set=train_dataset)

speechbrain_train_script.py

torchrun --nproc_per_node=8 speechbrain_train_script.py

 hyperparams.yaml --distributed_launch --distributed_backend=nccl

Interspeech 2022 — September 18th

Distributed Training: Parallel Model

Allreduce
gradients

Allreduce
gradients

GPU #0 GPU #1 GPU #2

Parallel data:
replicate model
across all devices

* Less efficient
in terms of space

Allgather params
during forward &

backward

Allgather params
during forward &

backward

GPU #0 GPU #1 GPU #2

Parallel model:
distribute model
shards to devices

* Communication
overhead, but uses
memory efficiently

Interspeech 2022 — September 18th

Distributed Training: Parallel Model

Origins of PyTorch
Fully Sharded Data
Parallel (FSDP):

● DeepSpeed

● FairScale

Rajbhandari, Samyam, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. "ZeRO: Memory optimizations toward training trillion parameter models." In
SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1-16. IEEE, 2020.

Interspeech 2022 — September 18th

Distributed Training: Parallel Model

Wrap policy specifies which layers get sharded

custom_auto_wrap_policy = functools.partial(

 torch.distributed.fsdp.wrap.transformer_auto_wrap_policy,

 transformer_layer_cls={ConformerBlock},

)

CPU offload allows training truly humongous models

sharded_model = torch.distributed.fsdp.FullyShardedDataParallel(

 single_device_model,

 auto_wrap_policy=custom_auto_wrap_policy,

 cpu_offload=torch.distributed.fsdp.CPUOffload(offload_params=True),

)

Interspeech 2022 — September 18th

Elastic and Fault-tolerant Experiments

Torch Distributed Elastic, upstreamed version 1.9.0

torchrun

 --nnodes=MIN_SIZE:MAX_SIZE

 --nproc_per_node=TRAINERS_PER_NODE

 --max_restarts=NUM_ALLOWED_FAILURES_OR_MEMBERSHIP_CHANGES

 --rdzv_id=JOB_ID

 --rdzv_backend=c10d

 --rdzv_endpoint=HOST_NODE_ADDR

 YOUR_TRAINING_SCRIPT.py (--arg1 ... train script args...)

https://pytorch.org/docs/stable/elastic/quickstart.html

Interspeech 2022 — September 18th

Outline

1. Scaling up
a. Distributed training

b. Elastic and fault-tolerant experiments

2. Efficient models
a. Mixed precision / Quantization

b. Model compilation

3. Deployment

Interspeech 2022 — September 18th

Mixed Precision / Quantization

● Reduced memory and bandwidth

● Faster operations on supporting hardware

● Some operations effective at small precision
e.g. linear, convolution, LSTM

● Some operations require higher precision

e.g. sigmoid, softmax, cross entropy

Interspeech 2022 — September 18th

Automatic Mixed Precision

scaler = torch.cuda.amp.GradScaler()

Automatically converts between float16 and float32

with torch.cuda.amp.autocast(dtype=torch.float16):

 output = model(input)

 loss = loss_fn(output, target)

Perform update operation with scaled gradient

scaler.scale(loss).backward()

scaler.step(optimizer)

scaler.update()

Interspeech 2022 — September 18th

Mixed Precision: Data Types

float16 — less stable due to reduced dynamic range, requires loss scaling

bfloat16 — supported natively by NVIDIA Ampere GPUs and Google TPUs,
no scaling needed

https://github.com/Ashok
Bhat/notes/wiki/Bfloat16

Interspeech 2022 — September 18th

Quantization (Aware Training)

● Easiest is post-training, but might lose performance

● Use quantization aware training to maintain scores

model_int8 = torch.quantization.quantize_dynamic(

 model_fp32, # the trained, full-precision model

 {torch.nn.Linear}, # a set of layers to dynamically quantize

 dtype=torch.qint8, # the target dtype for quantized weights

)

QAT preparation inserts observers and fake_quants in the model.

model_fp32_prepared = torch.quantization.prepare_qat(model_fp32)

training_loop(model_fp32_prepared)

Interspeech 2022 — September 18th

Model Compilation

● PyTorch is eager execution by default

● Graph mode support via JIT compile to TorchScript

● Can export compiled model to C++ or ONNX

● Op fusion support with NVFuser and NNC

● Removes GIL for multi-threaded inference

● Limitation: not easy to use for model training

Interspeech 2022 — September 18th

Model Compilation

PyTorch has two ways to compile:

1. torch.jit.trace() — provides model with

example inputs and records the operations.

2. torch.jit.script() — analyzes the Python

source code and compiles it to TorchScript.

Not sure which to use? Start with jit.trace()!

Interspeech 2022 — September 18th

Model Compilation: Limitations

torch.jit.trace() # Generalization is hard

● Does not support control flow (if-else statements)

● Sometimes captures variables as constants

torch.jit.script() # Compilers are hard

● Limited support for Pythonic syntax

● Requires code changes that can obfuscate code

These two approaches can be combined!

Interspeech 2022 — September 18th

Outline

1. Scaling up
a. Distributed training

b. Elastic and fault-tolerant experiments

2. Efficient models
a. Mixed precision / Quantization

b. Model compilation

3. Deployment

Interspeech 2022 — September 18th

Deployment

Huge area, deserves its own talk!

● Data sourcing / labeling / versioning / pipelining

● Model versioning / packaging / retraining

● Efficient / scalable model inference

● Evaluating / explaining / monitoring predictions

Interspeech 2022 — September 18th

Deployment: TorchServe

● Widely used (Kubeflow, MLflow, SageMaker)

● Packages all model artifacts to single archive

○ Tool is called torch-model-archiver

● Runs on server, responds to inference requests

○ Supports gRPC and HTTP/REST

Interspeech 2022 — September 18th

PyTorch at Scale

Thanks for attending! Any questions?

